Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Jens Hartung,* Nina Schneiders and Uwe Bergsträsser

Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany

Correspondence e-mail:
hartung@chemie.uni-kl.de

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
$R$ factor $=0.071$
$w R$ factor $=0.150$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## 4-Methyl-2-thioxo-2,3-dihydrothiazol-3-yl 4-methylphenyl carbonate

The $p$-cresyl substituent is inclined by $-69.5(10)^{\circ}$ and the heterocyclic subunit is tilted by 88.4 (7) ${ }^{\circ}$ with respect to the bridging carbonate functionality in the title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}_{2}$.

## Comment

The title compound, (I), constitutes the first example of a carbonic acid derivative of $N$-hydroxy-4-methylthiazole$2(3 \mathrm{H})$-thione (Schneiders, 2004). Its identity was verified by X-ray crystallography (Fig. 1).

(I)

In (I), the endocyclic bond lengths decrease along the series $\mathrm{C} 5-\mathrm{S} 1=1.715(8) \AA, \mathrm{C} 2-\mathrm{S} 1=1.729(7) \AA, \mathrm{N} 3-\mathrm{C} 4=$ 1.400 (8) $\AA, \mathrm{N} 3-\mathrm{C} 2=1.327$ (9) $\AA$ and $\mathrm{C} 4-\mathrm{C} 5=1.334$ (9) $\AA$, whereas the angles increase along the series $\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 5=$ $92.7(3)^{\circ}, \mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1=105.6(4)^{\circ}, \mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3=107.8(6)^{\circ}$, $\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1=113.0(5)^{\circ}$ and $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4=120.8(6)^{\circ}$. These parameters show that the heterocyclic ring is distorted from a regular pentagon. The C2-S2 distance $[1.648(6) \AA$ i is close to the thiocarbonyl bond lengths observed in structurally related cyclic thiohydroxamates (Bond \& Jones, 2000; Hartung et al., 1996, 2003). The N3-O1 bond is 1.407 (7) A, longer


The molecular structure of (I). Displacement ellipsoids are drawn at the 50\% probability level.

Received 21 December 2004
Accepted 14 January 2005 Online 29 January 2005


Figure 2
View of the close H6B‥S2 contacts along [100] in the crystal structure of (I).
than corresponding values in $O$-alkyl esters of thiohydroxamic acids (Hartung et al., 1999, 2003). It comes close to the value determined for the $\mathrm{N}-\mathrm{O}$ bond in $N$-(acetyloxy)-4-( $p$-chloro-phenyl)thiazole-2(3H)-thione (Hartung et al., 1999). The angles associated with the carbonate functionality decrease from $\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3=130.6(6)^{\circ}$ via $\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2=128.3(7)^{\circ}$ to $\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 3=100.9(6)^{\circ}$. The distance $\mathrm{C} 7-\mathrm{O} 2=$ 1.139 (8) $\AA$ is unexpectedly short for a $\mathrm{Csp}^{2}=\mathrm{O}$ bond (Allen et al., 1987). The two substituents of the carbonic acid ester functionality are connected via a shorter $[\mathrm{C} 7-\mathrm{O} 3=$ 1.347 (9) $\AA$ A $]$ and a longer bond $\mathrm{C}-\mathrm{O}$ bond to C 7 [C7-O1 = 1.383 (8) $\AA$ ]. The four atoms of the carbonate subunit form a plane [deviation of O 1 from $\mathrm{O} 2 / \mathrm{C} 7 / \mathrm{O} 3$ is 0.13 (3) $\AA$ ], which is inclined by $\mathrm{C} 2-\mathrm{N} 3-\mathrm{O} 1-\mathrm{C} 7=88.4(7)^{\circ}$ to the plane of the thiazolethione subunit $\left[\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1=-0.1(8)^{\circ}\right.$ and $\left.\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 3=-1.6(6)^{\circ}\right]$ and by $\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 7=$ $-69.5(10)^{\circ}$ to the $p$-cresyl plane $[\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11=$ $-0.7(13)^{\circ}$ and $\left.\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 8=-0.4(12)^{\circ}\right]$.

The packing of (I) in the unit cell gives rise to short $\mathrm{S} 2 \cdots \mathrm{H} 6 B$ distances ( $\mathrm{S} 2 \cdots \mathrm{H} 6 B=2.99 \AA$ ), which, in combination with the associated S2 $\cdots \mathrm{H} 6 B-\mathrm{C} 6 B$ angle ( $154^{\circ}$ ), points to a weak $\mathrm{C}-\mathrm{H} \cdots$ acceptor interaction between $\mathrm{C}=\mathrm{S}$ and ${\mathrm{C} 6 \mathrm{H}_{3}}^{(S t e i n e r, ~ 1996 ; ~ H a r t u n g ~ e t ~ a l ., ~ 2003) ~ a l o n g ~[100] ~}$ (Fig. 2).

## Experimental

$N$-Hydroxy-4-methylthiazole-2( 3 H )thione potassium salt ( 908 mg , 5.01 mmol ) was treated with $p$-methylphenyl chloroformate ( 855 mg , 5.01 mmol ) (Horwell et al., 1991) in anhydrous acetonitrile ( 30 ml ) (Schneiders, 2004). The reaction mixture was stirred for 5 min at 298 K. The solids were filtered off and the solvent was removed under reduced pressure. The residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to furnish (I) ( $591 \mathrm{mg}, 42 \%$ ). Crystals suitable for X-ray analysis were obtained from a saturated solution of $(\mathrm{I})$ in diethyl ether (m.p. $=358 \mathrm{~K}$ ). Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}_{2}$ : C 51.23 , H 3.94, N $4.98 \%$; found: C $51.22, \mathrm{H} 4.08, \mathrm{~N} 5.01 \% ;{ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $2.31(d, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.37(s, 3 \mathrm{H}), 6.25(q, J=1.3,1 \mathrm{H}), 7.21\left(m_{c}\right.$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, p.p.m.): 13.2, 20.8, 102.2, 119.9, 130.2, 136.5, 136.9, 148.6, 149.9, 180.1; IR (KBr): 3106, 2922, 1816, 1600, $1342,1322,1228,1175,1160,1135 \mathrm{~cm}^{-1}$; MS ( $70 \mathrm{eV}, \mathrm{EI}$ ): $\mathrm{m} / \mathrm{z}(\%)=$ 281 (8) $\left[M^{+}\right], 207(100), 196(47), 147$ (35), 131 (80), 99 (51), 71 (73).

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}_{2}$
$M_{r}=281.34$
Monoclinic, $P 2_{1}$.
$a=7.1730$ (14) $\AA$
$b=12.267$ (3) $\AA$
$c=7.8680(16) \AA$
$\beta=100.75$ (3) ${ }^{\circ}$
$V=680.2(2) \AA^{3}$
$Z=2$
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6004
reflections
$\theta=2.6-24.1^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.45 \times 0.30 \times 0.20 \mathrm{~mm}$

## Data collection

Stoe IPDS diffractometer $\varphi$ scans
6164 measured reflections
2015 independent reflections 1299 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.150$
$S=1.14$
2015 reflections
166 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0152 P)^{2}\right.$
$+0.158 P$ ]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$R_{\text {int }}=0.156$
$\theta_{\text {max }}=24.2^{\circ}$
$h=-7 \rightarrow 7$
$k=-14 \rightarrow 14$
$l=-9 \rightarrow 8$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23$ e $\AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.053 (6)
Absolute structure: Flack (1983),
856 Friedel pairs
Flack parameter $=0.28$ (17)

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~S}^{2}$ | 0.96 | 2.99 | $3.880(9)$ | 154 |

Symmetry code: (i) $x-1, y, z$.
All H atoms were placed in geometrically idealized positions ( $\mathrm{C}-$ $\mathrm{H}=0.93-0.96 \AA$ ) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\mathrm{eq}}(\mathrm{C})$. The high value of $R_{\mathrm{int}}$ is probably due to the fact that the crystal is a weak scatterer.

Data collection: EXPOSE (Stoe \& Cie, 1998); cell refinement: CELL (Stoe \& Cie, 1998); data reduction: INTEGRATE (Stoe \& Cie, 1998); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics and publication software: SHELXTL-Plus (Sheldrick, 1994).

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bond, A. D. \& Jones, W. (2000). J. Phys. Org. Chem. 12, 395-404.
Flack, H. D. (1983). Acta Cryst. A39, 876-871.
Hartung, J., Hiller, M., Schwarz, M., Svoboda, I. \& Fuess, H. (1996). Liebigs Ann. Chem. pp. 2091-2097.
Hartung, J., Schwarz, M., Svoboda, I. \& Fuess, H. (1999). Eur. J. Org. Chem. pp. 97-106.
Hartung, J., Schwarz, M., Svoboda, I. \& Fuess, H. (2003). Acta Cryst. C59, o682-o684.
Horwell, D. C., Hughes, J., Hunter, J., Pritchard, M. C., Richardson, R. S., Roberts, E. \& Woodruff, G. (1991). J. Med. Chem. 34, 404-414.
Schneiders, N. (2004). Diploma thesis, Technische Universität Kaiserslautern, Germany.
Sheldrick, G. M. (1994). SHELXTL-Plus. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steiner, T. (1996). Crystallogr. Rev. 6, 1-57.
Stoe (1998). IPDS Software, including EXPOSE, CELL and INTEGRATE. Versions 2.87. Stoe \& Cie GmbH, Darmstadt, Germany.

